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Abstract

The dynamics of thermal explosion in a fuel droplets/hot air mixture is investigated using the geometrical version of the method of integral
manifolds. The results are applied to the modelling of the ignition process in diesel engines. Effects of the thermal radiation, semi-transparency of
droplets and oxidizer are taken into account. In contrast to the previous studies, the difference between gas temperature (responsible for convective
heating of droplets) and external temperature (responsible for radiative heating of droplets) is taken into account. The dynamics of the explosion
is presented in terms of the dynamics of a multi-scale, singularly perturbed system. The relevant parametric regions of this system are analyzed.
Explicit analytical formulae for the ignition delay in the presence of thermal radiation are derived. It is shown that the effect of thermal radiation
can lead to considerable reduction (up to about 30%) of the total ignition delay time.
© 2006 Elsevier Masson SAS. All rights reserved.
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1. Introduction

The practical importance of the problem of a thermal explo-
sion in a mixture containing fuel droplets and gas is well known
and it has been widely discussed in literature (e.g. [1,2]). In
most cases this problem has been studied based on the applica-
tion of computational fluid dynamics (CFD) packages [2]. One
of the benefits of this approach is that it could take into ac-
count the complicated geometry of the enclosure and chemistry
of the processes involved. This makes it particularly attractive
for engineering applications including the modelling of com-
bustion processes in diesel engines. In this case, the thermal
explosion is modelled alongside a number of other processes,
including turbulence and the effects of complicated geometry.
This inevitably obscures the underlying physical processes in-
volved, and is likely to mitigate the limitations of the physical
and chemical models.
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Alternative approaches to the problem are based on the as-
ymptotic analysis of equations describing the limiting cases of
the processes. Although these approaches cannot replace the
conventional CFD analysis, they can effectively complement
it. One of these approaches is based on the application of the
zero-order approximation of the geometric version of the as-
ymptotic Method of Integral Manifolds (MIM), developed for
combustion applications in [3,4]. The results of the application
of this method have been reported in a number of papers. In [5]
this approach was applied to a specific problem of modelling
of ignition process in diesel engines. The radiative energy ex-
change between the fuel droplet surfaces and gas was described
using the P-1 model. The chemical term was presented in the
Arrhenius form with the pre-exponential factor calculated from
the enthalpy equation, using the Shell autoignition model. The
ignition process was subdivided into two stages: droplet evap-
oration and ignition of the gaseous mixture. Results predicted
by the analytical solutions were compared with those predicted
by the CFD package VECTIS. The effects of thermal radiation
were shown to be significant, especially at high temperatures
and for large droplets. There were a number of limitations of the
model used in that paper. A simplified thermal radiation model
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Nomenclature

a coefficient introduced in Eq. (6) . . . . . . . . . . . . m−b

ai , i = 0,1,2 coefficients introduced in Eq. (6) . . m−b K−i

af , bx coefficients used in the definition of ω̇

A pre-exponential
factor . . . . . . . . . . kmol1−(af +bx) m3−3(af +bx) s−1

b coefficient introduced in Eq. (7)
bi , i = 0,1,2 coefficients introduced in Eq. (7) . . . . . . K−i

C molar concentration . . . . . . . . . . . . . . . . . . kmol m−3

c specific heat capacity . . . . . . . . . . . . . . . J kg−1 K−1

E activation energy . . . . . . . . . . . . . . . . . . . . . J kmol−1

F,G functions introduced in Eqs. 8 and 9
h convection heat transfer coefficient . . W m−2 K−1

or position of the manifold
k1 efficiency factor of absorption
L latent heat of evaporation . . . . . . . . . . . . . . . . J kg−1

M molar mass . . . . . . . . . . . . . . . . . . . . . . . . . kg kmol−1

n number of droplets per unit volume . . . . . . . . . m−3

p pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pa
Pi , i = 1,2,3 dimensionless components of the RHS

of system (1)–(5)
q heat flux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W m−2

Q specific combustion energy . . . . . . . . . . . . . . J kg−1

r dimensionless droplet radius
Rd droplet radius . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
R universal gas constant . . . . . . . . . . . . . J kmol−1 K−1

t time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s
T temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K
�v phase velocity vector defined by Eq. (10)
x, y arguments introduced in Eqs. (8)–(9)

Greek symbols

β E/RTd0
βi E/RTdb
γ small dimensionless parameter
δ impact of the thermal radiation . . . . . . . . . . . . . . . %
εi, i = 1,2,3,4 dimensionless parameters introduced

in Eqs. (11)–(15)

ε small positive parameter introduced in Eq. (9)
η dimensionless fuel concentration
θ dimensionless gas temperature
ζ parameter introduced in Eqs. (2) and (5)
λ thermal conductivity . . . . . . . . . . . . . . . W m−1 K−1

ν stoichiometric coefficient
ξ dimensionless oxidizer concentration
ρ density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg m−3

σ Stefan–Boltzmann constant . . . . . . . . . W m−2 K−4

τ dimensionless delay time
ϕ dimensionless volumetric phase content
ω small dimensionless parameter
ω̇ chemical reaction rate . . . . . . . . . . . . . . . . . kmol s−1

Ω RHS of the slow curve equation

Subscripts

b boiling point
c convection
d droplet
ext external
f fuel
fs saturated fuel vapour
g gas mixture
gf final of gas mixture
hp heat-up
i induction
ox oxidizer
p constant pressure
r thermal radiation
react reaction
0 initial state

Superscripts

C convective
CR convective and radiative
ext external
was used, based on the assumption that droplets are opaque grey
spheres. The droplet heat-up period was not considered. The
model was tested for ‘average’ values of parameters in a diesel
engine combustion chamber, and the dependence of the results
on the variations of parameters there was not investigated. The
analytical part of the analysis was based on the assumption that
there was no deficiency of oxygen in the system, which can
hardly be justified for the region in the immediate vicinity of
the nozzles.

Some of the limitations of the model used in [5] were over-
come in [6]. The model for the radiative heating of droplets,
used in the latter paper, took into account the semi-transparency
of droplets, but it was assumed that gas in diesel engines is opti-
cally thick. This allowed the authors to assume that the radiation
temperature is equal to the gas temperature. A simplified model
for droplet heat-up was used. As in [5] it was assumed that
oxygen is not deficient in the system. The analysis was lim-
ited to just 2 sets of parameters, typical for the diesel engine
environment. These are ‘far zone’ (small initial liquid volume
fraction and small droplet radii) and ‘near zone’ (large initial
liquid volume fraction and large droplet radii). The conditions
of the first zone were typical for the areas in the diesel en-
gine combustion chamber which are far from the fuel injectors,
while the conditions of the second zone were typical for the ar-
eas in the combustion chamber which were relatively close to
the fuel injectors. It was pointed out that droplets heating and
evaporation time in the far zone was smaller than the chemical
ignition delay of the fuel vapour/air mixture. The total ignition
delay decreased when the initial gas temperature increased. In
the near zone, the process started with the initial gas cooling
and slight heating of droplets. This was followed by a relatively
slow heating of gas due to the chemical reaction, and further
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droplet heating. The total ignition delay in the near zone was
larger than in the far zone. It was expected that before thermal
explosion in the near zone takes place, the droplets break up
and are removed from this zone. Effects of thermal radiation in
both zones were shown to be negligible for small droplets but
were noticeable for large droplets.

In this paper the models described in [5,6] are developed fur-
ther and applied to the realistic conditions in diesel engines. As
in [6], the effects of thermal radiation are taken into account, the
droplets are assumed to be semi-transparent, and a simplified
radiation absorption model described in [7,8] is used. In con-
trast to [6], however, the radiation temperature is identified with
the external temperature. This is a more realistic situation for
diesel engines where this external temperature can be identified
with the temperature of remote flames. The modelling of the
heat-up process is similar to the one used in [6]. It is based on
the model suggested in [9]. In contrast to that paper, however,
the deficiency of oxygen is taken into account. The applicability
of the method of integral manifolds in various regions in diesel
engines is investigated. The analytical expressions for the total
ignition delay are obtained, where appropriate. The classifica-
tion of possible thermal regimes of the system is suggested.

2. Basic equations and approximations

Spray ignition is considered as an explosion problem, where
droplets are regarded as the source of endothermicity. The en-
dothermic versus exothermic competition determines explosion
regimes and their dependence on the physical and chemical pa-
rameters of the system. The medium is modelled as a spatially
homogeneous mixture of an optically thin, combustible gas
with a mono-dispersed spray of evaporating fuel droplets. The
distortion of the incident radiation by surrounding droplets, the
effects of droplet movement and the effect of temperature gra-
dient inside droplets are ignored. It is assumed that the incident
radiation has a black-body spectrum. The system is assumed to
be adiabatic. The limitations of these assumptions and the range
of their applicability have been discussed in numerous papers,
including [10–13].

With a view to the application of the results to diesel en-
gines, we assume that gas pressure is constant. Both convective
and radiative heating of droplets are taken into account. The
thermal conductivity of the liquid phase is assumed to be infi-
nitely large.

The volume fraction of the liquid phase is assumed to be
much less than that of the gaseous phase. Thus, the heat transfer
coefficient of the mixture is controlled by the thermal proper-
ties of the gaseous component. It is assumed that the burning
process, described by the first order exothermic reaction, takes
place in the gaseous phase only. Droplet velocities and the ef-
fects of natural convection are neglected in the analysis. There-
fore, ignoring the effects of the Stefan flow, Nusselt (Nu) and
Sherwood (Sh) numbers are taken equal to 2.

These assumptions allow us to describe the system by the
following equations:

cpgρgϕg

dTg = ω̇Mf Qf ϕg − 4πR2
dndqc (1)
dt
dCf

dt
= −νf ω̇ + 4πR2

dnd

(qc + qr)

LMf ϕg

(
1 − ζ(Td)

)
(2)

dCox

dt
= −νoxω̇ (3)

cf md

dTd

dt
= 4πR2

d(qc + qr)ζ(Td) (4)

d

dt

(
4

3
πR3

dρf

)
= −4πR2

d

(qc + qr)

L

(
1 − ζ(Td)

)
(5)

where

ω̇ = C
af
f Cbx

ox A exp

(
− E

RTg

)

qc = hc(Tg − Td), hc = λg

Rd

qr = k1σT 4
ext, k1 = aRb

d

a = a0 + a1

(
Text

103

)
+ a2

(
Text

103

)2

(6)

b = b0 + b1

(
Text

103

)
+ b2

(
Text

103

)2

(7)

ζ(Td) = Tb − Td

Tb − Td0

The initial conditions are the following: Td |t=0 = Td0,
Tg|t=0 = Tg0, Rd |t=0 = Rd0, Cf |t=0 = Cf 0, Cox|t=0 = Cox0.
The external thermal radiation is assumed to be that of a black
body, with the temperature Text. The values of parameters used
in the calculations are given in Section 3.3.

3. Analysis and results

The analysis of Eqs. (1)–(5) is based on the geometrical ver-
sion of the method of integral manifolds (MIM), which leads
to a simple, yet informative and practically useful description
of the system dynamics. In the next subsection Eqs. (1)–(5)
are presented in the dimensionless form and basic principles
of their analysis are described. In Section 3.3 possible dynamic
scenarios described by this system are analyzed. It is shown that
this system can be treated as singularly perturbed in two cases:
when gas or droplet temperatures are fast variables. These two
cases are analyzed in detail in Sections 3.4 and 3.5.

3.1. Method of integral manifolds

Method of integral manifolds (MIM) is described in details
in [14,15]. The original geometrical version of this method was
applied to stiff problems of chemical kinetics and combustion
by Gol’dshtein and Sobolev [4]. To demonstrate the essence of
this approach, let us consider a 2-dimensional system of ordi-
nary differential equations:

dx

dt
= F(x, y) (8)

ε
dy = G(x,y) (9)

dt
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where F(x, y) and G(x,y) are continuous functions of their
arguments. If the parameter ε is small (0 < ε � 1 ), then system
(8)–(9) is called singularly perturbed.

In such case, curve M := {(x, y): y = h(x, ε)} is defined as
an integral manifold of Eqs. (8)–(9).

If any phase trajectory γ (x, y) of these equations intersect-
ing with M belongs to M in the domain of existence of M [16].
The general theory of integral manifolds states that integral (in-
variant) manifolds M belong to the ε-neighborhood of the slow
(quasi-stationary) manifold M0 := {(x, y): y = h0(x)}, where
y = h0(x) is an isolated solution of Eq. (9) with ε = 0. It was
shown in [14,15] that the slow surface (slow manifold) M0 is an
O(ε) approximation of the integral manifold, which can be used
for qualitative analysis. This allows us to lower the dimension
of the system under investigation.

At each point of the phase space (or at each point of the
region where system (8)–(9) is considered), this system deter-
mines the phase-velocity vector:

�v(x, y) =
(

1

ε
G(x, y),F (x, y)

)
(10)

which is tangential to the system trajectory.
The slow manifold may attract or repel system trajectories.

This is determined by the direction of vector field (10): toward
the slow surface or away from it.

Each trajectory of the system under consideration in the
close vicinity of the slow surface tends to some trajectory on
the slow surface. The slow parts of the trajectory are located
on M . Its stability is controlled by the sign of ∂G

∂x
. The con-

ditions ∂G
∂x

< 0 and ∂G
∂x

> 0 define the stable (attractable) and
unstable (repealing) manifolds, respectively. The condition for
marginal stability F = ∂F

∂x
= 0 defines the above mentioned

turning points, which separate the stable (attractable) parts from
the unstable (repelling) parts.

For the purpose of qualitative analysis, the zero approxima-
tion, M0, of the system integral manifold can be taken. This
means that the application of the technique presented above to
the solution of Eqs. (8)–(9) should start with an estimate of the
relative rates of change of the variables and a decision as to
which of them are fast and which are slow.

3.2. Dimensionless system

Following Semenov [17] we have introduced the following
dimensionless variables:

θg = E

RTd0

Tg − Td0

Td0
, θd = E

RTd0

Td − Td0

Td0

r = Rd

Rd0
, η = Cf

Cff
, ξ = Cox

Cox0

where

τ = t

treact
, treact = 1

AC
af −0.5
ff Cbx−0.5

ox0

exp

(
1

β

)

The initial conditions for dimensionless variables are:

θg

∣∣
τ=0= θg0 �= 0, θd

∣∣
τ=0= θd0 = 0

r|τ=0 = r0 = 1, η|τ=0 = η0, ξ |τ=0 = ξ0 = 1
Using these dimensionless variables, Eqs. (1)–(5) can be rewrit-
ten as:

dθg

dτ
= 1

γ

(
P1(θg, η, ξ) − P2(θg, θd, r)

)
(11)

dη

dτ
= 1

ν̃f

[
−P1(θg, η, ξ) + ψ

νf

P23(θg, θd, r)
(
1 − ζ(θd)

)]
(12)

dξ

dτ
= − 1

ν̃ox
P1(θg, η, ξ) (13)

dθd

dτ
= ε2

ε4r3

(
P2(θg, θd, r) + P3(r)

)
ζ(θd) (14)

d(r3)

dτ
= −ε2

(
P2(θg, θd, r) + P3(r)

)(
1 − ζ(θd)

)
(15)

where

β = RTd0

E
, γ = cpgTd0ρgβ

(Cox0Cff )0.5Qf Mf

Cff = 4π

3
R3

d0ρf nd

1

Mf

(1 + ωf ), ωf � 1

ε1 = 4πRd0ndλg0Td0β

C
af

ff Cbx
ox0AQf ϕgMf

exp

(
1

β

)

ε2 = (Cox0Cff )
0.5Qf ϕgMf

ρf Lϕf

ε3 = 4T 3
d0σRd0k10

λg0
, ε4 = cf Td0β

L

P1(θg, η, ξ) = ηaξb exp

(
θg

1 + βθg

)

P2(θg, θd, r) = ε1r

√
Td0(1 + βθg)

Tg0
(θg − θd)

P3(r) = ε1ε3

4β
r2+b

(
1 + βθext

g

)4

P23(θg, θd, r) ≡ P2(θg, θd, r) + P3(r)

θext
g = 1

β

Text − Td0

Td0
, ζ(θd) = Tb − Td0(1 + βθd)

Tb − Td0

ν̃f = 1

νf

√
Cff

Cox0
, ν̃ox = 1

νox

√
Cox0

Cff

Appropriate combination of Eqs. (14)–(15) yields the partial
integral of this system in the form:

r(θd) = 3
√(

eθd · (ζ(θd)
)θdb

)ε4 (16)

As follows from expression (16), r → 0 when ζ → 0. The latter
happens when the droplet surface temperature approaches the
boiling temperature. In addition, expression (16) allows us to
exclude Eq. (15) from the following investigation.

In order to clarify the influence of the thermal radiation on
the delay time before the final explosion of the system we in-
troduce the term impact of the thermal radiation, which is mea-
sured in per cents and defined as:

δ(%) = τCR
delay − τC

delay

τCR
· 100 (17)
delay
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where τCR
delay and τC

delay are the delay times obtained from Eqs.
(11)–(14) and (16) with and without taking into account the
influence of thermal radiation. In the latter case we assume
that P3 = 0.

3.3. Possible dynamical scenarios

The system has been analyzed for the set of parameters typ-
ical for diesel engines [5]:

E = 7.6 × 107 J kmol−1

λg0 = 0.061 W m−1 K−1

Td0 = 300 K

cpg = 1120 J kg−1 K−1

Mf = 170 kg kmol−1

Text = 2500 K

Qf = 4.3 × 107 J kg−1

σ = 5.67 × 10−8 W m−2 K−4

Tb = 600 K

ρg0 = 23.8 kg m−3

L = 3.6 × 105 J kg−1

ρf = 600 kg m−3

a0 = 0.104 m−b

a1 = −0.05432 m−b K−1

a2 = 0.008 m−b K−2

b0 = 0.49162

b1 = 0.098369 K−1

b2 = −0.007857 K−2

The values of physical parameters, except for the spectral prop-
erties, are taken for n-dodecane. The spectral properties are
based on direct measurements for low sulphur ESSO AF1313
diesel fuel as reported in [8].

The values of the initial gas temperatures, droplet radii and
droplet concentrations are taken in the range:

(Tg0,Rd0, nd0) ∈ [600,1100] × [
5 × 10−6,5 × 10−5]

× [
106,1012] (18)

where Tg0 is in K, Rd0 is in m and nd0 is in m−3.
Note that not all combinations of the parameters shown

above can be observed in diesel engines. For example, the as-
sumption that spherical non-interacting droplets are present in
the gas is expected to be valid only when their volume fraction
is small enough. Assuming that this threshold value is 0.3 we
can write this condition in the form:

ϕf = 4π

3
R3

d0nd0 < 0.3

The plots of Rd0 versus nd0 for ϕf = 0.0001,0.001,0.01,0.1
and 0.3 (numbers near the curves) are shown in Fig. 1. The
range of parameters for which ϕf > 0.3 corresponds to the
shaded area on this figure.
Fig. 1. Plots of droplet radii versus droplet number density for various ϕ (indi-
cated near the curves). The parametric domain where ϕf > 0.3 is shown in the
top right corner.

For the process under consideration, the system of govern-
ing equations is given by Eqs. (11)–(15). The explosive process
described by these equations represents a sequence of sub-
processes. The fastest subprocess is called fast. Every fast sub-
process is characterized by the highest rate of change of the
variables. The rate of change of system variables at every stage
of the process is determined by the absolute values of the right-
hand sides of the corresponding equations. Hence, in order to
determine which of the system variables is the fastest at the ini-
tial stage of the process, the absolute values of the right-hand
sides of the governing equations at τ = 0 will be analyzed. This
will allow us to identify possible dynamic regimes of the sys-
tem and link them to sub-ranges of parameters. Eqs. (11)–(15)
have no discontinuities, but they are highly non-linear. To iden-
tify the boundaries of various dynamic regimes of the system,
the following mesh-based algorithm is used.

The 3-dimensional parametric domain (18), describing the
range of possible values of Tg0, Rd0 and nd0, is divided into
smaller boxes, such that the length of each of their side is one
hundredth of the appropriate initial box side length. Let us de-
note

Hi = Hi(Tg0,Rd0, nd0), i = 1, . . . ,4 (19)

as the initial absolute value of the right-hand side of one of
Eqs. (11)–(14) (i = 1,2,3,4 refers to Eqs. (11)–(14), respec-
tively). The values of variables θg , η, ξ , θd and r in the right-
hand sides of these equations are taken equal to their initial val-
ues. The initial absolute value of the right-hand side of Eq. (15)
is equal to 0.

Let

Hij = Hi(Tg0,Rd0, nd)

Hj (Tg0,Rd0, nd)
, i, j = 1, . . . ,4, i �= j (20)

The values of Hij were arranged into four arrays:
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H 1 = {H12,H13,H14} (21)

H 2 = {H21,H23,H24} (22)

H 3 = {H31,H32,H34} (23)

H 4 = {H41,H42,H43} (24)

A variable of the system is considered to be the fastest if,
for a given combination (Tg0,Rd0, nd0), all components of the
appropriate array are greater than 10. As follows from our
analysis, for certain initial gas temperatures and droplet con-
centrations, elements of Array (21), satisfying this condition
for the dimensionless gas temperature, are restricted from be-
low by a certain threshold initial droplet radius. The plots of
allowed minimum Rd0 versus Tg0 for nd = 2.8 × 1011 m−3,
nd = 3×1011 m−3 and nd = 4×1011 m−3 are shown in Figs. 2,
3 and 4, respectively. In the unshaded areas above the plots
shown in these figures, the dimensionless gas temperature θg

is the system fast variable. Note that the values of Rd0 are lim-
ited from above by the condition ϕf < 0.3 (see Fig. 1) and the
upper limit for Rd0 observed in diesel engines (see Eq. (18)).
Comparing Figs. 2, 3 and 4, one can see that the range of al-
lowed values of Rd0 widens with increasing values of nd .

Similarly, the maximal values of Rd0 for which the ele-
ments of Array (24) satisfy a similar condition for dimen-
sionless droplet temperatures θd for nd = 1011 m−3 and nd =
2 × 1011 m−3 are shown in Figs. 5 and 6 respectively, in a cer-
tain range of initial gas temperatures. In the unshaded areas
shown in these figures, the dimensionless droplet temperature
θd is the fast system variable. As in Figs. 2, 3 and 4, the values
of Rd0 are restricted from above by the condition ϕf < 0.3 (see
Fig. 1) and the upper limit for Rd0 observed in diesel engines
(see Eq. (18)). They are restricted from below by the lower limit
for Rd0 (see Eq. (18)). As follows from Figs. 5 and 6, the range
of allowed values of Rd0 widens with increasing Tg0.

Fig. 2. Plot of the minimal values of Rd0, when gas temperature can be consid-
ered as the fast variable, versus Tg0 for nd = 2.8 × 1011 m−3. The unshaded
area corresponds to the fast gas temperature domain.
Domains of the fast gas temperature, shown in Figs. 2, 3
and 4, refer to relatively large droplets injected into a rather
hot gas. These conditions can refer to the case of droplets in
the vicinity of the nozzle in a diesel engine combustion cham-
ber when the combustion process has already started (recall our
earlier assumption that Text = 2500 K). Domains of the fast
droplet temperature, shown in Figs. 5 and 6, refer to smaller
droplets injected into cooler gas. In the absence of thermal ra-
diation, this domain can be associated with the region in a diesel
engine combustion chamber away from the nozzle (cf. the cor-
responding regions discussed in [6]). Gas temperatures, slightly
lower than those expected at the end of the compression stroke
in diesel engines can be attributed to heat consumption during
the evaporation process. In the presence of thermal radiation,

Fig. 3. The same as Fig. 2 but for nd = 3 × 1011 m−3.

Fig. 4. Fig. 2 but for nd = 4 × 1011 m−3.
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Fig. 5. Plot of the maximal values of Rd0, when droplet temperature can be con-
sidered as the fast variable, versus Tg0 for nd = 1 × 1011 m−3. The unshaded
area corresponds to the fast droplet temperature domain.

Fig. 6. The same as Fig. 5 but for nd = 2 × 1011 m−3.

this domain can be associated with the case when the ignition
has taken place at one side of the spray, but has not yet spread
to the whole spray (see [18,19]).

Arrays (22) and (23) do not satisfy the above mentioned con-
ditions for the values of Hij . This means that, in the given
domain (18), the dimensionless fuel concentration η and di-
mensionless oxidizer concentration ξ cannot be the system fast
variables. Hence, we can expect that the only possible dynam-
ical scenarios, when the method of integral manifolds can be
applied, are those when the fast dimensionless variables are
gas temperature θg and droplet temperature θd (and normalized
droplet radius: see Eq. (16)). These will be considered in detail
in the following sections.

3.4. Case A: Fast gas temperature θg

This scenario is realized when the initial gas temperature
Tg0, initial droplet radius Rd0 and the initial droplets number
density nd0 have the values in the domains, shown in Figs. 2, 3
and 4. The system slow curve is obtained by setting the right-
hand side of Eq. (11) to 0. In the case of one fast and one slow
variable, the slow manifold of the system is a two-dimensional
curve. In the general case, however, several slow variables can
be present in the system. In order to reduce the number of these
variables the partial integrals could be used. The system under
investigation has just one such integral, which is described by
Eq. (16). Its further analysis could be simplified if the slowest
variable is found among the slow variables. The task of find-
ing such variable is not difficult, since only the right-hand side
of the Eq. (15) is zero when τ = 0. Hence, the slowest system
variable at the initial stage of the process is the dimensionless
droplet radius r . This can be chosen as the second variable of
the system slow curve, i.e.:

Ω(θg, r) = P1(θg, η0, ξ0) − P2(θg, θd0, r) = 0

As follows from our analysis for the set of parameters under
consideration the trajectory of system (11)–(14) lies in the re-
pulsive part of the slow curve. Therefore, the delay time can
be formally obtained by the integration of Eq. (11) between the
initial, θg0, and final, θgf , values of the dimensionless gas tem-
perature:

τdelay = γ

θgf∫
θg0

dθg

(1 + βθg)(P1(θg, η0, ξ0) − P2(θg, θd0, r0))
(25)

The practical application of Eq. (25) is limited due to the fact
that the value of θgf is not known and needs to be obtained
from the numerical solution of the system of Eqs. (11)–(14).
Figs. 7 and 8 show the dependence of Tgf on the droplets num-
ber density nd . Note that the delay time predicted by Eq. (25)
is different from the total ignition delay defined as the time
span between droplet injection and the time when the fuel
vapour/air mixture reaches an a priori chosen temperature (typ-
ically 1100 K) [20,21]. The latter is typically used for the analy-
sis of the processes in diesel engines. The dependence of τdelay
on the effects of thermal radiation lies in the dependence of θgf

on this radiation (via the term P3).
Figs. 9 and 10 show the dependence of the delay time on

the droplets number density in the presence of thermal radia-
tion for three values of the initial droplet radius (Rd0 = 34 µm,
Rd0 = 32 µm, Rd0 = 30 µm) and for two values of the initial
gas temperature 1075 K and 1100. These values of parame-
ters together with the assumed value of the external temperature
Text are extreme rather than typical for the diesel engine envi-
ronment. The external temperature can be associated with the
temperature of remote flame. Strong dependence of the delay
time on droplet radius is due to the corresponding dependence
θgf on the amount of burnt fuel.
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Fig. 7. Gas final temperature Tgf versus droplets number density as predicted
by Eq. (25), for Text = 2500 K and Tg0 = 1075 K ((1) refers to Rd0 = 34 µm,
(2) refers to Rd0 = 32 µm, (3) refers to Rd0 = 30 µm).

Fig. 8. The same as Fig. 7 but for Tg0 = 1100 K.

As follows from Figs. 9 and 10, the delay times increase with
increasing droplet number density and droplet initial radii. This
is an expected result, as the ignition delay is ultimately con-
trolled by the rate of increase of gas temperature. If the volume
fraction of the liquid fuel is too high then the drop of gas tem-
perature due to droplet evaporation would lead to the additional
delay in the setup of the ignition.

Comparing Figs. 9 and 10 one can see that the ignition delay
decreases with increasing initial gas temperature. This result
is understandable: the higher the initial gas temperature is, the
more favorable are the conditions for the oxidizing of fuel, and
the shorter is the predicted ignition delay.
Fig. 9. Delay time versus droplets number density as predicted by Eq. (25) in
the presence of thermal radiation, for Text = 2500 K and Tg0 = 1075 K ((1)
refers to Rd0 = 34 µm, (2) refers to Rd0 = 32 µm, (3) refers to Rd0 = 30 µm).

Fig. 10. The same as Fig. 9 but for Tg0 = 1100 K.

The dependence of the radiation impact on the droplet num-
ber density is shown in Figs. 11 and 12 for the same values of
the initial droplet radii and gas temperatures as in Figs. 9 and
10. The negative impact of thermal radiation shown in Figs. 11
and 12 indicates that the thermal radiation leads to decrease of
the ignition delay. This result is expected from the point of view
of the underlying physics of the process. The more heat is ab-
sorbed by the droplet via thermal radiation—the quicker it is
evaporated. The energy for this evaporation, however, is taken
mainly from the external source of thermal radiation and not
from the surrounding gas. When the number of droplets present
in the system and their radii increase, then the amount of ther-
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Fig. 11. Impact of thermal radiation versus droplets number density as predicted
by Eq. (25), for Text = 2500 K and Tg0 = 1075 K ((1) refers to Rd0 = 34 µm,
(2) refers to Rd0 = 32 µm, (3) refers to Rd0 = 30 µm).

Fig. 12. The same as Fig. 11 but for Tg0 = 1100 K.

mal radiation absorbed by the liquid fuel is expected to increase
as well. This is consistent with the increase of thermal radiation
impact with increased droplet number density and radii shown
in Figs. 11 and 12. A slight decrease of this impact with in-
creasing droplet number density at the initial part of two of the
curves shown in Fig. 12, can be attributed to additional gas tem-
perature drop due to enhanced evaporation under the influence
of thermal radiation. A decrease of the impact of thermal radia-
tion with increased initial gas temperatures, which can be seen
by comparison of Figs. 11 and 12 can be attributed to the in-
creased role of convective heating at higher gas temperatures.

Note that the system dynamics for the case when gas temper-
ature is the fast variable, as described above, is different from
the system dynamics for a similar case when gas temperature
is the fast variable, as described in [6]. In the latter case, the
slow manifold was attractive, and the ignition delay was mainly
determined by the time, which the system spent on the slow
manifold. Hence the ignition delays predicted by Figs. 9 and 10
turned out to be more that 2 orders of magnitude shorter than
that predicted in [6]. This can be attributed to the smaller initial
gas temperature 900 (K), and much smaller external tempera-
ture used in the analysis of [6]. The latter was assumed equal
to Tg , and this led to a much smaller impact of thermal radia-
tion predicted by [6] compared with our current analysis. This
result would be expected in the light of the physical background
of the processes involved.

Also, the values of the coefficients in the chemical terms
used in the present model and in [6] are different. It is rather
difficult to compare them, as the used models had different
foundations. In the present model the coefficients were taken
from [22] and the deficiency of oxygen was taken into account.
In [6] the coefficients obtained in [5] were used. These were
based on the approximation of the results predicted by the Shell
model. Both approaches are rather inaccurate. We cannot, at
present, compare the results predicted by our simplistic model
with experimental data or CFD calculations (e.g. [18,19]). The
main reason for this is that the regime predicted by this model is
likely to be realized in the vicinity of the nozzle, where we can-
not ignore the inhomogeneity of the medium and the effect of
fast moving droplets. Although the ignition delays predicted by
the present model are much shorter than those predicted in [6],
they are still likely to be shorter than the transit time of droplets
in the vicinity of the nozzle (less than about 1 mus). Hence,
ignition in this region is not expected. This prediction of the
model agrees with available experimental data and the predic-
tions of CFD simulations [18,19].

3.5. Case B: Fast droplet temperature θd

This scenario is realized when the initial gas tempera-
ture Tg0, initial droplet radius Rd0 and the initial droplets num-
ber density nd0 are in the domains, shown in Figs. 5 and 6. In
this case the thermal explosion process should be divided into
two separate consecutive sub-processes: the heat-up and evapo-
ration process and the induction process. The actual time delay
before the explosion occurs can be estimated as the sum of the
heat-up and evaporation time (physical delay) and the induc-
tion time (chemical delay). In the following two sections these
times will be estimated separately.

3.5.1. Heat-up and evaporation time
During the heat-up and evaporation period the dimension-

less temperature of relatively cold (compared to the surrounding
gas) fuel droplets rises from its initial value θd0 to its boil-
ing point θb . This heating of droplets is accompanied by their
evaporation as predicted by Eq. (16). Since the droplet dimen-
sionless temperature θd is the fastest system variable, the rest of
the system variables, except for the droplet normalized radius
r (which is related to θd via Eq. (16)) are assumed constant.
Moreover, as mentioned earlier, during the heating process the
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fuel droplets evaporate completely (within the droplet heat-up
model used in this paper)

Since during the heat-up and evaporation period the droplet
dimensionless temperature θd is the fastest system variable, the
slow curve of the system is obtained by equating the right-hand
side of Eq. (14) to 0, i.e.:

Ω(θg, θd) = ε2

ε4r3(θd)

[(
P2

(
θg, θd, r(θd)

)
+ P3

(
r(θd)

))
ζ(θd)

] = 0 (26)

where r(θd) is given by Eq. (16).
The trajectory of the system starts with the fast motion from

the initial point (θg0, θd0) toward the attractive branch of Slow
curve (26). After a short period of time, it intersects with the
slow curve at the point which coordinates (θg0, θ

�
d ) satisfy the

equation of the slow curve:

Ω(θg0, θ
�
d ) = 0

Thereafter, it starts a relatively slow movement along the at-
tractive branch of the slow curve. This movement continues
until the trajectory reaches the point (θgb, θdb), where θgb is the
dimensionless gas temperature corresponding to the dimension-
less fuel boiling temperature θdb. This point is the turning point
of Slow curve (26). It satisfies the following equations (see Sec-
tion 3.1):{

Ω(θgb, θdb) = 0
∂Ω
∂θd

(θgb, θdb) = 0

Ignoring the contribution of the initial fast part of the system
trajectory, the heat-up period can be estimated from the analysis
of the part of the trajectory along the attractive branch of the
slow curve. Using Eq. (11) we obtain the expression of the heat-
up and evaporation period in the form:

τhp =
θgb∫

θg0

γ dθg

(1 + βθg)(P1(θg, η0, ξ0) − P2(θg, θd, r))
(27)

Since the dimensionless variables θg and θd are on the slow
curve, we obtain from Eq. (26): −P2(θg, θd, r) = P3(r). In ad-
dition, the implicit expressions θg = θg(θd) and θd = θd(θg) can
be readily obtained from the same equation. Using Eq. (16), we
can write P3(r) ≡ P3(θd). This leads to the following formula
of the heat-up and evaporation time:

τCR
hp =

θgb∫
θg0

γ dθg

(1 + βθg)(P1(θg, η0, ξ0) + P3(θg))
(28)

where the additional superscript CR indicates that both convec-
tive and radiative heating are taken into account. In the absence
of thermal radiation this equation is simplified to:

τC
hp =

θ�
gb∫

θ

γ dθg

(1 + βθg)P1(θg, η0, ξ0)
(29)
g0
where superscript C indicates that only convective heating is
taken into account, the point (θ�

gb, θdb), with θgb �= θ�
gb, is the

turning point of the slow curve

Ω�(θg, θd) = ε2

ε4r3(θd)

[
P2

(
θg, θd, r(θd)

)
ζ(θd)

] = 0 (30)

which can be found from Eqs. (11)–(14).

3.5.2. Induction time
The heat-up and evaporation time, discussed in the previ-

ous section, describes the period when droplet dimensionless
temperature θd reaches its boiling value θdb and the droplets
evaporate. As mentioned earlier, during this time the fuel
droplets evaporate completely. Therefore, Eqs. (15) and (14)
can be excluded from the system of Eqs. (11)–(15). Also, af-
ter the droplets have evaporated the heat exchange between
the gaseous and liquid phases disappears. Thus, the terms
P2(θg, θd, r), P3(θ

ext
g , r) and P23(θg, θ

ext
g , θd, r) describing the

heat and the thermal radiation fluxes, are to be removed from
the system equations under consideration.

We introduce the following new dimensionless variable:

θgi = E

RTdb

Tg − Tdb

Tdb
= βi

Tg − Tdb

Tdb
(31)

where βi = E
RTdb

and Tdb is the boiling temperature of the fuel.
This allows us to present the system of the governing equa-

tions in the form:

dθgi

dτ
= 1 + βiθgi

γ
P1(θgi, η, ξ) (32)

dη

dτ
= − 1

ν̃f

P1(θgi, η, ξ) (33)

dξ

dτ
= − 1

ν̃ox
P1(θgi, η, ξ) (34)

where⎧⎨
⎩

θgi |θd=θdb = θgi0 �= 0

η|θd=θdb = ηb

ξ |θd=θdb = ξb = 1

As in [6], the induction time can be calculated as:

τinduction = γ

η
af
b ξbx

b

∞∫
θg0

e−θg dθg = γ

η
af
b ξbx

b

(35)

The total ignition delay is calculated as:

τtotal = τhp + τinduction (36)

The plots of the total ignition delay in the presence of ther-
mal radiation, as predicted by Eq. (36), versus droplet number
density for two values of the initial droplet radii 12 µm and
9.5 µm are shown in Figs. 13 and 14. These figures refer to the
initial gas temperatures 750 K and 775 K. The value of the ex-
ternal temperature is assumed equal to 2500 K. The values of
these parameters are chosen in such a way that they satisfy the
condition for fast droplet temperature. These values are typical
for the diesel engine environment, except for the value of the ex-
ternal temperature. The latter is higher than typically observed,
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Fig. 13. Total ignition delay time versus droplets number density in the pres-
ence of thermal radiation as predicted by Eq. (36) for Text = 2500 K and
Tg0 = 750 K ((1) refers to Rd0 = 12 µm, (2) refers to Rd0 = 9.5 µm).

Fig. 14. The same as Fig. 13 but for Tg0 = 775 K.

but not unrealistic. As in the case discussed in Section 4.4, this
temperature can be assumed to be linked with the temperature
of remote flames. As can be seen from these figures, the delay
time increases with increasing droplet number density and ra-
dius, and decreases with increasing initial gas temperature. This
is consistent with the results shown in Figs. 9 and 10. The phys-
ical explanation of these dependencies is the same as given in
Section 4.4 for the case when gas temperature is a fast variable.

Figs. 15 and 16 show the dependence of the thermal radia-
tion impact on the droplets number density for the same values
of parameters as in Figs. 13 and 14. As in the case discussed in
Section 4.4, the impact of thermal radiation shown in Figs. 15
and 16 is always negative, which indicates that thermal radia-
Fig. 15. Impact of Thermal Radiation versus droplets number density as
predicted by Eq. (36) for Text = 2500 K and Tg0 = 750 K ((1) refers to
Rd0 = 12 µm, (2) refers to Rd0 = 9.5 µm).

Fig. 16. The same as Fig. 15 but for Tg0 = 775 K, Text = 2500 K.

tion leads to decrease in the ignition delay time, Also, similarly
to the case considered in Section 4.4, the impact of thermal ra-
diation increases with increasing droplet number density and
droplet radii, and decreasing initial gas temperature. The phys-
ical explanation of all these properties is the same as given in
Section 4.4.

The absolute values of impact of thermal radiation shown in
Figs. 15 and 16 are much less than shown in Figs. 11 and 12.
This can be attributed to two factors. Firstly the sizes of droplets
for which Figs. 15 and 16 are presented are much less than those
used for Figs. 11 and 12 (the amount of thermal radiation en-
ergy absorbed in droplets is approximately proportional to their
radii in the power 2.5 [23,24]). Secondly, in the case considered
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in this section, part of the ignition delay is due to the induction
time, on which the thermal radiation has no influence.

Note that the total ignition delays shown in Figs. 13 and
14 are somewhat less than those predicted in [6]. This can be
attributed to different values of coefficients in the chemical
terms and different approximations used in the present model
and in [6] (see the discussion in Section 4.4). The decrease of
the ignition delay time with increasing initial gas temperature,
which follows from Figs. 13 and 14, is consistent with Fig. 5
of [6].

The order of magnitude of the total ignition delay pre-
dicted by the present model and the model described in [6]
agree with experimental data and predictions from CFD sim-
ulations [18,19].

4. Conclusions

A new model, taking into account the oxidizer and thermal
radiation effects on the thermal explosion of a hot combustible
mixture of air and evaporating fuel droplets is presented. The
analysis is performed for the values of parameters typical for
diesel engines-like environments. The physical properties of the
fuel are taken those for n-dodecane, except for the spectrum of
the thermal radiation absorption which was based on the direct
measurements for low sulphur ESSO AF1313 diesel fuel as re-
ported in [8]. The droplets are assumed to be semi-transparent,
and their heating is controlled by the external temperature (as-
sociated with remote flames). The model takes into account the
heat release due to the exothermic oxidation of fuel vapour, heat
losses due to liquid fuel evaporation, fuel vapour consumption
as a result of a chemical reaction, fuel vapour supply by evapo-
rated liquid fuel and two mechanisms of heating of evaporating
fuel droplets: convection and radiation. The system of equations
describing the effects of heating, evaporation and combustion
of fuel droplets is simplified by assuming that the Nusselt and
Sherwood numbers are equal to 2. Also, the effects of the Stefan
flow on heating and evaporation are ignored by assuming that
Spalding mass and temperature numbers are small. The mathe-
matical formulation of the problem is presented in the form of a
singularly perturbed system of four nonlinear ordinary differen-
tial equations. The dynamical behavior of the system is inves-
tigated with the help of the geometrical version of the method
of integral manifolds (MIM). It is shown that this method is
applicable in the cases when gas or droplet temperatures are
fast variables in the system. The subranges of parameters when
these regimes can take place are identified.

In the case when the droplet temperature is identified as the
fast variable, the ignition time delays are presented as a sum
of the physical delay (heat-up and evaporation time) and the
chemical delay (induction time). During the droplet heat up
and evaporation period the leading-order solution indicated the
synchronization between the temperature of the droplets, their
radius, and gas temperature. The analytical expressions for the
heat-up and evaporation delay time and induction delay time
are derived. The dependence of both delays on the physical pa-
rameters of the system is investigated.
In both cases the total ignition delay time and the absolute
value of the thermal radiation impact increase with the increase
of the droplet number density and radii. Also, in both cases the
increase of the initial gas temperature leads to the decrease of
the total ignition delay and the impact of thermal radiation. The
thermal radiation effects lead to a decrease in the total ignition
delay time, as follows from the negative values of the impact of
thermal radiation. The absolute values of the impact of thermal
radiation are noticeably greater when compared with the case
studied in [6], where it was assume that the external temperature
is equal to the current gas temperature.
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